
Compiler Design – PCC CS 501 AY: 2022-2023

B.Tech/CSE/Sem-5/2022

Report writing on

FLEX
Badhan Biswas (R.N: 11000120019)

Department of Computer Science and Engineering,

Government College of Engineering and Textile Technology, Serampore

badhan@outlook.in

Flex is a tool for generating scanners. A scanner is a program

which recognizes lexical patterns in text. The flex program reads

the given input files, or its standard input if no file names are

given, for a description of a scanner to generate. The description

is in the form of pairs of regular expressions and C code, called

rules. flex generates as output a C source file, ‘lex.yy.c’ by default,

which defines a routine yylex(). This file can be compiled and

linked with the flex runtime library to produce an executable.

When the executable is run, it analyzes its input for occurrences

of the regular expressions. Whenever it finds one, it executes the

corresponding C code.

I. INTRODUCTION

Before 1975 writing a compiler was a very time-
consuming process. Then Lesk (1975) and Johnson (1975)
published papers on lex and yacc. These utilities greatly
simplify compiler writing. Implementation details for lex and
yacc may be found in Aho-Ullman[1].

FLEX (fast lexical analyzer generator) is a tool/computer
program for generating lexical analyzers (scanners or lexers)
written by Vern Paxson in C around 1987. It is used together
with Berkeley yacc parser generator or GNU Bison parser
generator. Flex and Bison both are more flexible than Lex and
yacc and produces faster code. Bison produces parser from the
input file provided by the user. The function yylex() is
automatically generated by the flex when it is provided with a
.l file and this yylex() function is expected by the parser to call
to retrieve tokens from current/this token stream. The function
yylex() is the main flex function that runs the Rule Section and
extension (.l) is the extension used to save the programs.

II. DETAILED EXPLANATIONS

A. Flex

During the first phase the compiler reads the input and
converts strings in the source to tokens. With regular
expressions we can specify patterns to flex so it can generate
code that will allow it to scan and match strings in the input.
Each pattern specified in the input to flex has an associated
action. Typically, an action returns a token that represents the
matched string for subsequent use by the parser.

The following represents a simple pattern, composed of a
regular expression, that scans for identifiers. Flex will read
this pattern and produce C code for a lexical analyzer that
scans for identifiers.

letter(letter|digit)*

This pattern matches a string of characters that begins with
a single letter followed by zero or more letters or digits. This

example nicely illustrates operations allowed in regular
expressions:

• repetition, expressed by the “*” operator

• alternation, expressed by the “|” operator

• concatenation

Any regular expression may be expressed as a finite state
automaton (FSA). We can represent an FSA using states, and
transitions between states. There is one start state and one or
more final or accepting states.

Fig. 1. Finite State Automaton

In Figure 1, state 0 is the start state and state 2 is the
accepting state. As characters are read, we make a transition
from one state to another. When the first letter is read, we
transition to state 1.

We remain in state 1 as more letters or digits are read.
When we read a character other than a letter or digit, we
transition to accepting state 2. Any FSA may be expressed as
a computer program. For example, our 3-state machine is
easily programmed:

This is the technique used by flex. Regular expressions are
translated by flex to a computer program that mimics an FSA.
Using the next input character and current state the next state
is easily determined by indexing into a computer-generated
state table.

Now we can easily understand some of flex’s limitations.
For example, flex cannot be used to recognize nested
structures such as parentheses. Nested structures are handled
by incorporating a stack. Whenever we encounter a “(” we

start: goto state0

 state0: read c

 if c = letter goto state1

 goto state0

state1: read c

 if c = letter goto state1

 if c = digit goto state1

 goto state2

state2: accept string

2

push it on the stack. When a “)” is encountered we match it
with the top of the stack and pop the stack. However, flex only
has states and transitions between states. Since it has no stack,
it is not well suited for parsing nested structures.

B. Practice

Regular expressions in lex are composed of
metacharacters (Table 1). Pattern-matching examples are
shown in Table 2. Within a character class normal operators
lose their meaning.

TABLE 1. PATTERN MATCHING PRIMITIVES

TABLE 2. PATTERN MATCHING EXAMPLE

Two operators allowed in a character class are the hyphen
(“-”) and circumflex (“^”). When used between two characters
the hyphen represents a range of characters. The circumflex,
when used as the first character, negates the expression. If two
patterns match the same string, the longest match wins. In case
both matches are the same length, then the first pattern listed
is used.

III. APPLICATIONS

To use flex first we need to install flex on our machine.
Here we are using Ubuntu22 OS. To install flex, we need to
execute this command in the terminal.

Note: If the Update command is not run on the machine
for a while, it’s better to run it first so that a newer version is
installed as an older version might not work with the other
packages installed or may not be present now.

A. How to use

There are only three step to use flex.

1. An input file describes the lexical analyzer to be
generated named lex.l is written in lex language.
The flex compiler transforms lex.l to C program,
in a file that is always named lex.yy.c.

2. The C compiler compile lex.yy.c file into an
executable file called a.out.

3. The output file a.out take a stream of input
characters and produce a stream of tokens.

Fig. 2. Steps in flex

B. Format of the Input File

 The flex input file consists of three sections, separated by

a line containing only ‘%%’.

 definitions
 %%

 rules

 %%

 user code

C. Format of the Definition Section

The definitions section contains declarations of simple

name definitions to simplify the scanner specification, and

declarations of start conditions, which are explained in a later

section. Name definitions have the form:

Name definition

The ‘name’ is a word beginning with a letter or an

underscore (‘_’) followed by zero or more letters, digits, ‘_’,

or ‘-’ (dash). The definition is taken to begin at the first non

whitespace character following the name and continuing to

the end of the line. The definition can subsequently be

referred to using ‘{name}’, which will expand to

‘(definition)’. For example,

.

Defines ‘DIGIT’ to be a regular expression which

matches a single digit, and ‘ID’ to be a regular expression

which matches a letter followed by zero-or-more letters-or-

digits. A subsequent reference to {DIGIT}+"."{DIGIT}* is identical

to ([0-9])+"."([0-9])* and matches one-or-more digits followed by

a ‘.’ followed by zero-or-more digits.

 An unindended comment (i.e., a line beginning with

‘/*’) is copied verbatim to the output up to the next ‘*/’.

$sudo apt-get update

$sudo apt-get install flex

DIGIT [0-9]

ID [a-z][a-z0-9]*

3

Any indented text or text enclosed in ‘%{’ and ‘%}’ is

also copied verbatim to the output (with the %{ and %}

symbols removed). The %{ and %} symbols must appear

unindented on lines by themselves.

A %top block is similar to a ‘%{’ ... ‘%}’ block, except

that the code in a %top block is relocated to the top of the

generated file, before any flex definitions. The %top block is

useful when you want certain preprocessor macros to be

defined or certain files to be included before the generated

code. The single characters, ‘{’ and ‘}’ are used to delimit the

%top block, as show in the example below:

%top{

 /* This code goes at the "top" of the

generated file. */

 #include <stdint.h>

 #include <inttypes.h>

 }

Multiple %top blocks are allowed, and their order is

preserved.

D. Format of the Rule Section:

The rules section of the flex input contains a series of

rules of the form:

pattern action

where the pattern must be unindented and the action must

begin on the same line. In the rules section, any indented or

%{ %} enclosed text appearing before the first rule may be

used to declare variables which are local to the scanning

routine and (after the declarations) code which is to be

executed whenever the scanning routine is entered. Other

indented or %{ %} text in the rule section is still copied to

the output, but its meaning is not well-defined and it may well

cause compile-time errors (this feature is present for POSIX

compliance.[2]

Any indented text or text enclosed in ‘%{’ and ‘%}’ is

copied verbatim to the output(with the %{ and %} symbols

removed). The %{ and %} symbols must appear unindented

on lines by themselves.

TABLE 3. FLEX PREDEFINED VARIABLES

E. Implementation

 It will be more clear with a example. The following

example calculate the number of identifiers in an input string

digit [0-9]

letter [A-Za-z]

%{

 int count=0;

%}

%option noyywrap

%%

{letter}({letter}|{digit})* count++;

%%

int main(void) {

 yylex();

 printf("\nNumber of identifiers= %d\n", count);

 return 0;

}

F. Output in the Terminal

 If we follow the steps one by one, we will get the

something like this:

czr@mackbookpro:-/Desktop$ flex test.l

czr@mackbookpro:-/Desktop$ clang lex.yy.c

czr@mackbookpro:-/Desktop$./a.out

Badhan SB BB6 nb7

Number of identifiers= 4

G. Issues with Flex

I. Time Complexity

 A Flex lexical analyzer usually has time complexity in

the length of the input. That is, it performs a constant number

of operations for each input symbol. This constant is quite

low: GCC generates 12 instructions for the DFA match loop.

Note that the constant is independent of the length of the

token, the length of the regular expression and the size of the

DFA. However, using the REJECT macro in a scanner with

the potential to match extremely long tokens can cause Flex

to generate a scanner with non-linear performance. This

feature is optional. In this case, the programmer has explicitly

told Flex to "go back and try again" after it has already

matched some input. This will cause the DFA to backtrack to

find other accepted states. The REJECT feature is not enabled

by default, and because of its performance implications its

use is discouraged in the Flex manual.[3]

II. Reentrancy

 By default, the scanner generated by Flex is not re-

entrant. This can cause serious problems for programs that

use the generated scanner from different threads. To

overcome this issue there are options that Flex provides in

order to achieve reentrancy. A detailed description of these

options can be found in the Flex manual.[4]

4

III. Usage under non-Unix environments

 Normally the generated scanner contains references to

the unistd.h header file, which is Unix specific. To avoid

generating code that includes unistd.h, %option nounistd

should be used. Another issue is the call to isatty (a Unix

library function), which can be found in the generated code.

The %option never-interactive forces flex to generate code

that does not use isatty.[5]

IV. Using flex from other languages

 Flex can only generate code for C and C++. To use the

scanner code generated by flex from other languages a

language binding tool such as SWIG can be used.

H. Flex ++

 Flex++ is a similar lexical scanner for C++ which is

included as part of the flex package. The generated code does

not depend on any runtime or external library except for a

memory allocator (malloc or a user-supplied alternative)

unless the input also depends on it. This can be useful in

embedded and similar situations where traditional operating

system or C runtime facilities may not be available. The

flex++ generated C++ scanner includes the header file

FlexLexer.h, which defines the interfaces of the two C++

generated classes.

IV. CONCLUSION

Flex can perform simple transformations by itself but its
main purpose is to facilitate lexical analysis, the processing of
character sequences such as source code to produce symbol
sequences called tokens for use as input to other programs
such as parsers. So, flex is a very important part of Compiler
Design. I hope this report will be able to give a vivid idea
about flex, its use cases and importances.

REFERENCES

[1] Aho, Alfred V., Ravi Sethi and Jeffrey D. Ullman [2006].

[2] Lesk, M. E. and E. Schmidt [1975]. Lex – A Lexical Analyzer
Generator. Computing Science Technical Report No. 39, Bell
Laboratories, Murray Hill, New Jersey. A PDF version is available at
ePaperPress.

[3] "Performance - Lexical Analysis With Flex, for Flex 2.5.37".

Flex.sourceforge.net. Archived from the original on 2022-08-28.

[4] "Reentrant - Lexical Analysis With Flex, for Flex 2.5.37".
Flex.sourceforge.net. Archived from the original on 2010-11-17.

[5] "Code-Level And API Options - Lexical Analysis With Flex, for Flex

2.5.37". Flex.sourceforge.net. Archived from the original on 2022-08-

28. Retrieved 2022-08-28.

	I. Introduction
	II. Detailed Explanations
	A. Flex
	B. Practice

	III. Applications
	A. How to use
	B. Format of the Input File
	C. Format of the Definition Section
	The definitions section contains declarations of simple name definitions to simplify the scanner specification, and declarations of start conditions, which are explained in a later section. Name definitions have the form:
	The ‘name’ is a word beginning with a letter or an underscore (‘_’) followed by zero or more letters, digits, ‘_’, or ‘-’ (dash). The definition is taken to begin at the first non whitespace character following the name and continuing to the end of th...
	.
	Defines ‘DIGIT’ to be a regular expression which matches a single digit, and ‘ID’ to be a regular expression which matches a letter followed by zero-or-more letters-or-digits. A subsequent reference to {DIGIT}+"."{DIGIT}* is identical to ([0-9])+"."([...
	An unindended comment (i.e., a line beginning with ‘/*’) is copied verbatim to the output up to the next ‘*/’.
	Any indented text or text enclosed in ‘%{’ and ‘%}’ is also copied verbatim to the output (with the %{ and %} symbols removed). The %{ and %} symbols must appear unindented on lines by themselves.
	A %top block is similar to a ‘%{’ ... ‘%}’ block, except that the code in a %top block is relocated to the top of the generated file, before any flex definitions. The %top block is useful when you want certain preprocessor macros to be defined or cert...

	D. Format of the Rule Section:
	The rules section of the flex input contains a series of rules of the form:
	pattern action
	where the pattern must be unindented and the action must begin on the same line. In the rules section, any indented or %{ %} enclosed text appearing before the first rule may be used to declare variables which are local to the scanning routine and (af...
	Any indented text or text enclosed in ‘%{’ and ‘%}’ is copied verbatim to the output(with the %{ and %} symbols removed). The %{ and %} symbols must appear unindented
	on lines by themselves.

	E. Implementation
	F. Output in the Terminal
	G. Issues with Flex
	H. Flex ++

	IV. Conclusion
	References

